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Arbitrary combinations of bond lengths, bond angles and torsion angles can be used as generalized 
coordinates for describing molecular models. It is shown how these and the conventional Cartesian or 
fractional unit-cell coordinates can be interconverted. Algorithms are also given for the geometrical 
analysis of rigid structures of links joined by flexible connectors (where only bond lengths are specified). 
Properties of the connectivity matrix, as an alternative complete description of a structure, are developed. 
Several applications of the above procedures are described. 

Introduction 

Given a set of parameters sufficient to define a general, 
unsymmetrical geometrical structure, such as a poly- 
hedron (convex or otherwise), a molecule or a frame- 
work, it is often necessary to calculate certain con- 
sequential geometrical parameters. This calculation is 
often very difficult or tedious when done by exact alge- 
braic means, since the solution of several simultaneous 
quadratic equations is usually necessary. For calcu- 
lations of the energy and other parameters depending 
on pair interactions, for example, all interatomic dis- 
tances must be found. Problems similar to those of 
molecular architecture occur also in real architecture, 
particularly with structures like the geodesic domes 
elaborated by Buckminster Fuller. 

Modern computational facilities, especially those 
providing on-line access by time sharing, are now widely 
available. The procedures to be described show how 
geometrical models, very similar to the widely used 
ball-and-spoke models, but of indefinitely high accur- 
acy, can be realized with a general computer. The pro- 
grams have been written in BASIC and, since a pro- 
gram itself is very easily changed while using it from 
a teletypewriter keyboard, elaborate provisions for 

all eventualities are not necessary. The programs (on 
paper tape) are available from the author. 

A general geometrical program 

The primary or intrinsic parameters of an array of 
N points are the bond distances d~j between pairs of 
points, the bond angles Oijk defined by triplets of 
points and running from 0 to 180 ° and the torsion 
angles (or dihedral angles) ~0~jkz which each require 
four points for identification and which run from - 180 
to 180 °, a sense of rotation being defined in terms of 
a right-hand screw (Appendix). The secondary or de- 
rived parameters of the points are their eoordinate~ 
xi,y~,z~ with respect either to orthogonal Cartesian 
axes or to crystallographic axes. The derived coor- 
dinates change with the axes and are not invariants 
of the structure. Following the Erlangen Programme 
of Klein (1872) wherever possible, quantities which 
are invariants of the structure and thus of physical 
significance are used. In each case 3N-6 parameters 
are needed to describe a structure of N points. Six 
further parameters clamp the grouping in a coordinate 
system. 

Just as the solution of triangles is fundamental 
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to plane geometry, so solid geometry requires the 
solution of tetrahedra. Often no single triangle of 
the four making any tetrahedron can be solved directly 
from the data provided, and simultaneous equations 
must be set up. In a tetrahedron six properly-chosen 
parameters are sufficient for its definition, but any of 
six distances, twelve bond angles and six dihedral 
angles may be required. Euclid's Elements give no 
guidance on irregular tetrahedra and, although for- 
mulae were developed in the eighteenth century, it is 
simpler to use numerical methods. A program to solve 
tetrahedra is desirable but, as there are many structures 
which cannot be divided into tetrahedra, a more gen- 
eral approach has been followed. 

A general program (MOLEC4) has been written 
in BASIC to solve a wide variety of problems of this 
category. In outline its operation is as follows: 

Initial data are supplied. These are: 
(a) Unit-cell parameters if fractional cell coordi- 

nates are to be used; otherwise 1, 1, 1,90 °, 90 °, 90 ° are 
assumed as cell dimensions. 

(b) The number of points (N) in the structure. 
(c) The x ,y , z  coordinates of the first three points, 

which are to be taken as fixed. (This is not the only 
way in which a structure may be clamped in a frame- 
work of coordinates and it fixes nine parameters, in- 
stead of the six parameters which can be chosen 
arbitrarily. However, if other methods of fixing the 
structure are required, then extra dummy points, not 
part of the structure, can be introduced as a device 
for specifying the particular constraints, which may 
be angles relating the structure to the axes. In this 
way the proper number of six parameters can be kept 
fixed while the others are refined.) 

(d) Rough x ,y , z  coordinates for each of the other 
points. (These are the quantities which are to be refined, 
so that if they are initially close to the correct values 
refinement will be quicker. Refinement will never- 
theless usually occur even if the initial values are far 
out. The initial coordinates are really only needed to 
guide the refinement into the desired configuration 
rather than let it go into another minimum, in the 
multidimensional coordinate space, which may also 
satisfy the requirements.) 

(e) The number of interpoint distances d~j, the dis- 
tances themselves, their estimated standard deviations 
and their reference numbers i and j. 

( f )  Similar data for the bond angles 0~jk and the 
torsion angles rp~k~. (It is usual to specify standard 
deviations of 0.001 A for distances, 0.1 ° for bond 
angles and 1 ° for torsion angles, to resemble the prop- 
erties of a ball-and-spoke model, but this is only used 
to determine the weights in the least-squares refinement 
and does not affect the overall accuracy.) 

The program operates by calculating the values of 
the given parameters from the initial coordinates and 
finding the discrepancies. The weighted sum of the 
squares of the discrepancies is minimized. Each coor- 
dinate xi,y~,z~ is then varied in turn and the discrep- 

ancies are recalculated to give the differential coef- 
ficients with which to form the observational equations. 
The weighted observational equations are then com- 
bined to give the normal equations which are then 
solved. Since BASIC has exceptionally concise matrix 
statements, this process is simple. The corrections to 
the initial positions x,,y, ,z,  are applied but, as the 
problem is non-linear, the procedure must be iterated. 
The corrections applied to give positions for the next 
cycle are severely damped so that, for typical molec- 
ular structures, the maximum displacement allowed 
is about 1.7 A, one typical bond distance. This is 
done by using the arctangent function of x, which is 
near x when the latter is small compared with one, but 
which does not exceed ~/2 however big x may be. When 
the corrections to the coordinates do not exceed a 
preset amount (usually 10 .6 A) refinement ceases and 
the initial and final coordinates are printed out, to- 
gether with the prescribed values of the parameters 
and their final values. If the problem is exactly deter- 
mined by the initial data, then an exact fit with the 
data is obtained; if there are more data than necessary, 
then a least-squares fit is obtained and if the problem 
is underdetermined, the refinement fails. If required 
for the least-squares case, standard deviations could 
be calculated from the normal matrix, but this is 
usually unnecessary and is omitted. 

Normally the corrections to the coordinates are 
printed out at each cycle to enable the process of 
convergence to be followed. If the refinement does not 
take place in a few cycles then the situation demands 
inspection which the running of the programme on- 
line permits. 

If, for example, a helix is specified by the coordinates 
of the first group together with the torsion angles at 
which successive groups should be added, then a later 
residue cannot be refined into position until its pre- 
decessor is settled. It must, therefore, be prevented 
from running away before its turn comes. The math- 
ematical process thus clearly represents the physical 
procedure of model building; if a physically imposs- 
ible procedure is demanded then, of course, the pro- 
gram will fail. At the end of the program any desired 
parameters can be calculated from the coordinates 
which have been found. Run-time input is used for 
this. 

Applications 
Some typical applications of the procedure are the 
following:- 

(a) Obtaining the x ,y , z  coordinates of the atoms 
in a helix given the distances and angles relating one 
group to another. 

(b) Obtaining the whole set of fractional coordinates 
in a crystal-structure analysis when part of the molecule 
has been recognized. 

(e) Finding the stresses in an engineering structure 
by calculating how the whole set of parameters varies 
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when one is altered slightly (Maxwell's method of 
virtual work) (Timoshenko & Young, 1965). 

(d) The problem readily solves the general problem 
discussed by Drazin & Otte (1963) and by Fong (1973) 
which is to assign indices to a crystal face, given that 
three other planes intersect it to give trace lines in 
the surface, the angles between which can be measured. 
In origin the problem is a particular metallurgical one 
and relates to the traces of the {111} slip planes 
which may appear on an etched surface of a cubic 
crystal. This reduces to the solution of a tetrahedron 
(Fig. 1) where six parameters are given. Angles BAC, 
DAC, BAD, BDC, BCD and the length AD are known. 
It is required to find the sides BA and CA. No single 
triangle can be solved by itself so that, as Fong's 
paper demonstrates, the algebra is laborious. 

(e) Given five of the six angles between four bonds 
meeting at a point, it is required to find the sixth angle. 
This application is discussed further below. 

(f)  A further problem, discussed below, is to find 
the three undefined interpoint distances (12, 34, 56) 
in an irregular octahedron when the lengths of the 12 
edges are given (Fig. 2). This is one example of a 
minimally connected structure of rods, freely jointed, 
which contains no tetrahedra or other separately rigid 
subunits. If any bond is cut the rigidity of the structure 
disappears, and thus the length of each bond depends 
on the length of every other. If the energy of atoms 
assembled in this way is to be calculated, then these 
extra distances have to be found. 

(g) Refining a molecular structure in real space to 
obtain the x,y ,z  coordinates which best fit an a priori 
set of interatomic distances and angles. 

Simplifications 

It has been found convenient to use two simplified 
programs, both in principle contained in MOLEC4, 
in an extended examination of polyhedra. In the ver- 
sion ICOSA, coordinates xi,y~,z~ are refined when 
only a minimal set of distances is supplied [application 
(f)  above]. Here the differentials, the variations of the 
discrepancies with changes in the coordinates, are cal- 
culated analytically, instead of altering each coordinate 
in turn and recalculating all parameters. All distances 
are given equal weights and no provision is made for 
the least-squares treatment of excess data. With this 
program, for example, the coordinates of 12 points 
forming an irregular icosahedron can be found, given 
the lengths of the 30 unequal edges. 

With this it is convenient to use a separate pro- 
gram (DIMEN) which calculates specified distances, 
bond angles and torsion angles, given a set of coor- 
dinates. 

Non-redundant rod structures 

We will now examine the particular class of rigid struc- 
tures where only the bond (or interpoint) distances 
d u are prescribed and the values of the bond angles 

and the torsion angles follow as consequences. This 
class comprises those non-redundant structures which 
can be made by joining rigid rods with flexible con- 
nectors. An octahedron of 12 rods is such a structure. 
Cauchy's theorem (Lyusternik, 1956) states that if every 
face of a convex polyhedron is rigid, then the poly- 
hedron as a whole is rigid. A triangle is the only poly- 
gon which can be rigid without redundancy, and there- 
fore the class is that of the deltahedra and more gen- 
eral triangulated structures. 

Manipulations use only interpoint distances, which 
are most conveniently presented as a matrix. 

Properties of the metric matrix 

We will examine the properties of the metric matrix, 
first for the usual three-dimensional case (International 
Tables for X-ray Crystallography, 1959, p. 60). 

The metric matrix in three dimensions is important 
because it represents a tetrahedron, the solution of 
which, as we have seen, is the primary requirement in 
dealing with three-dimensional structures. 

Three non-coplanar vectors a, b and c define a 
parallelepiped OAB'CC'O'BA (Fig. 3). O is the origin. 
The metric matrix gu is independent of the particular 
axes to which the parallelpiped may be referred and 
has a number of important properties. It is defined as 
the array of the scalar products of the edges. 

B k/h 

A 

C 

Fig. 1. The traces of the planes Okl, hOl and hkO on hkl in- 
tersect at measured angles BDC and BCD. Given the cell 
dimensions and these angles find hkl. 

6 
Fig. 2. Given the lengths of the 12 edges of an irregular octa- 

hedron 123456, find the distances 12, 34, 56. 
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g i j ]  = [ aabbbab 
a c b c . 

Klein points out (p. 145) that 'The theory ofinvariants 
permits the systematic enumeration of all possible 
magnitudes and theorems, without exception, since it 
supplies the complete system of invariants and syz- 
ygies'. 

The invariants of the metric matrix are: 
The trace, T = a  2-Jrb 2-b C 2 =  4 & (sum of the squares of 
the 12 edges of the parallelepiped). The second in- 
variant, 

~ b . c  i I ;2. a . b  [a[ a ~  ~ S= b c 2 Jr b2 --1- " - -  a a c  2 2 

(sum of the squares'of the areas of the six faces of the 
parallelohedron). These three terms are each sep- 
arately invariant, as are, of course, the lengths of the 
edges. 

The determinant, D = Ig~jl = the square of the volume 
of the parallelohedron. 

The volume of the simplex OABC is ~ of that of 
the parallelepiped and in N dimensions 1/N of the 
hypervolume of the corresponding parallelohedron. If 
the characteristic equation [gij--•tj2j[-----O is set up, 
then these invariants are the coefficients. 

If the three angles at O are right angles, then we find 
the special relationship, an extension of Pythagoras' 
Theorem, that for a right-angled tetrahedron OABC, 
the square of the area of the hypotenuse ABC (ex- 
tending the usual meaning of the word) is equal to the 
sum of the squares of the areas of the other three 
sides. This is so because in three dimensions, as in 

A" 

,N y c "  

A 

Fig. 3. A parallelepiped is defined by three vectors a, b and e. 

2 

4 

] 3 

Fig. 4. Given five of the six angles between four bonds meeting 
at a point, find the sixth. 

two, the sum of the squares of the direction cosines 
is unity. 

The N - d i m e n s i o n a l  metr ic  m a t r i x  

Similar relationships hold in higher numbers of di- 
mensions. For example, in four dimensions four vec- 
tors ax, a2, a3, a4 define a simplex of five points (count- 
ing the origin) and a parallelohedron of 16 vertices. 
The metric matrix is [g~j] = [at. a j]. Its invariants are :- 
Trace= T=  81(sum of squares of 32 edge lengths). 
Second invar iant=S=¼ (sum of squares of areas of 
24 faces). Third invariant= U=½ (sum of squares of 
volumes of 8 parallelepipeds). Determinant=D= 
square of hypervolume of one 4-dimensional paral- 
lelohedron. (The Euler relation is satisfied since 
1 6 - 3 2 + 2 4 - 8 + 1 = 1 . )  If the simplex is of dimen- 
sionality less than four then the hypervolume van- 
ishes. If, further, we take four unit vectors then the 
scalar products at . aj represent the cosines of the 
angles O~oj (abbreviated to 0t j). Thus, 

0 11 = COS 012 COS 013 COS 014 
',COS 012 1 COS 023 COS 024 
cos01a cos 023 1 cos0a4 
cos 014 cos 024 cos0a4 1 

This is thus the relationship connecting the six angles 
between four bonds meeting at a point (Fig. 4). If 
five of these angles are known, then the sixth can be 
calculated, but not without some difficulty if it has 
to be done algebraically, although the determinant can 
be multiplied out to give a quadratic for one of the 
angles in terms of the others. It follows that the value 
of this determinant is a proper measure of the consis- 
tency of a set of six independently measured bond 
angles. The calculation is, in fact, best done by the 
computational algorithm given earlier (Mackay, 1973). 

I am indebted to Professor J. D. Dunitz for pointing 
out this application. 

In three dimensions the analogous expression is 
already familiar and if the determinant for the volume 
of a cell is multiplied out we obtain V2=a2b2c2(1- 
COS 2 012 --  COS 2 023 -- COS2031 "Jl- 2 cos 012. cos 023. cos 0a0. 
The condition that the expression in brackets should 
be zero is thus 012 + 02a + 0al = 360 °. 

In general, the metric matrix in N dimensions is of 
rank N, but, if the parallelohedron or simplex (of N +  1 
points) which is described is degenerate and is only 
N-dimensional, then the N x N metric matrix is only 
of rank M. This means that all minors of rank greater 
than M will be zero. This can be used, as Klein indi- 
cates, to provide a number of powerful relationships 
for solving the geometry of rod structures. We may 
take two examples. 

The  pentac le  problem 

In three dimensions, given the distance of a point 1 
from three reference points 3, 4, 5 and the distances 
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of a second point 2 from the same three points, find 
the distance d12. Two solutions are possible; 1 and 2 
on the same side of 345 and 1 and 2 on opposite sides 
of 345. The problem is a basic one in calculating all 
distances in a structure and is the three-dimensional 
analogue of triangulation (Fig. 5). Since the figure 
12345 is three-dimensional, 
volume will be zero, thus" 

its four-dimensional hyper- 

o d~z d2a d~4 d~s 1 
:d21 0 d223 d22¢ d~s 1 
'd21 d22 0 d~4 d~s ll=O. 

II 
d~ d22 d23 d~4 0 1 
]1 1 1 1 1 o 

This determinant relating the distances dij between the 
points i and j is symmetrical and is a quadratic in 
d22. It can be solved by the algorithm mentioned 
which involves iteration, or can be solved directly from 
the quadratic Ad42 + Bd22 + C =  0 where the coeffi- 
cients are: 

11 1 1 , 

which is 16 x (area of the triangle 345) 2, 

d2a 0 d2s 11 

i1,. d~3, 0'l 
and C is equal to the original determinant in which 
d~22 is set equal to zero. 

Since M =  Ax 2 + Bx + C, on differentiation we have 
M ' = 2 A x +  B so that B=(M'):,=o 

and M"--  2A. 

Solution of the octahedral frame (Fig. 2) 

The distances d~ between the six points are used to 
form a symmetrical 6 x 6 matrix [d~j]. This we call 
the connectivity matrix. This is then expanded to give 
the expression for the five-dimensional hypervolume, 
a 7 x 7 determinant exactly analogous to the one used 
in the previous section. By subtracting the first row 
and the first column from the others, since da2. dis = 
1 2 2 ~(dla+ d12-d22a) we obtain the metric matrix with ori- 
gin at the point 1. 

In the case of the octahedron the terms dlz, da4 and 
ds6 are to be found, all the 12 others being known. 
Since the figure is three-dimensional, the four-dimen- 
sional hypervolumes, which are the minors of the above 
determinant are zero. There are three different minors 
of this type, so that we have three equations for three 
unknowns. An iterative computer method of solution 
is necessary. However, the program ICOSA, dis- 

cussed above, is in fact a simpler method. The example 
demonstrates the situation when there are no con- 
stituent tetrahedra in a framework. 

Factorization of the metric matrix 

In pursuit of the aim of using invariants (such as 
distances) instead of coordinates in the description of 
structures, it is necessary to be able to pass easily 
from one system to the other. It is clearly easy to 
calculate distances, bond angles and torsion angles 
when given the coordinates, and this is done by the 
program (DIMEN) mentioned above. To go in the 
opposite direction requires the following procedure. 

The ( N -  1) × ( N -  1) metric matrix formed as above 
from the squares of the distances between N points 
in M dimensions is symmetrical and can thus be fac- 
torized by the Choleski process (Rollett, 1965) into 
the product of a lower triangular matrix and its trans- 
pose. A program (MATFAC) has been written in 
BASIC to do this. 

We will show that, if M =  3 and the structure con- 
sists of N points (for example six points forming an 
octahedron) the resulting lower triangular matrix gives 
the x,,y,,zi coordinates of the points with respect to 
orthogonal Cartesian axes where the point 1 is taken 
as origin, the point 2 lies on the x axis, the point 3 
lies in the xy plane and the point 4 has a positive z 
coordinate (Fig. 6). That is, the tetrahedron 1234 is 
held in the orthogonal axes as if fixed by a 'kine- 
matic clamp (Elliott & Dickson, 1951). 

Taking first only four points 1234, we have the ex- 
pression (International Tables for X-ray Crystallography 
1959, p.44) for the volume of the tetrahedron formed:- 

6V=[xl Yl zl 1 
Ix2 Yz Zz 1 
xa Ya za 1 
x4 Y4 z4 1 

where Xl = Yl = zl = Yz = Zz = za = O. 

When this expression is multiplied by its transpose 
we have: 

36 V z = [g~j] = [at. a j] 

5 2 

a 3 
Fig. 5. Given the distances of points 1 and 2 from points 3, 4 

and 5 (and the distances 34, 45, 56), find the distance 12. 
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which is the metric matrix since 

at.  a j--  x~xj +YtY~ + z~zj . 

It is clear that this procedure can be carried out for 
any number of dimensions. If the configuration of N 
points is degenerate and does not represent a simplex 
in N-l-dimensional  space, but is fully described in 
three dimensions, then the coordinates relating to the 
further dimensions will be zero. The procedure out- 
lined above thus derives the dimensionality and coor- 
dinates for a configuration of points from a table of 
all their mutual distances. This table must be a full 
one of all ½(N-  1)N distances and not just the 3 N -  6 
distances which may be the minimum necessary. This 
gives rise to the necessity for the calculation of the 
extra distances which is described above. 

If the distances are experimentally derived for a 
three-dimensional array of more than four points, then 
there will be residual errors which appear as coor- 
dinates in higher dimensions. The nature of the Chol- 
eski process is such that these residuals accumulate 
towards the lower right corner of the resultant matrix. 
They give a measure of the self-consistency of the inter- 
point distances, just as the hypervolume gives a meas- 
ure of the consistency of the six angles between the 
four bonds. 

The connectivity matrix 

The complete table of the interatomic distances in a 
molecule, which we regard as the fundamental variety 
of connectivity matrix, has further properties. 

Inertia 

For example, the principal moments of inertia of a 
molecule composed of atoms of mass m~ with inter- 
atomic distances d~j can be calculated without further 
data. 

A theorem due to Lagrange (Lamb, 1911) dem- 
onstrates that the trace T of the inertia tensor is given 
by T 

T :  ~, ~, rn,rnj(d,j)2/ ~ mt 
l j d 

(summed over all pairs). 
It must be possible to find similar expressions for 

41 z 
2 x ~  I ' ,/ 

3 

Fig. 6. Six parameters (xt,yl, za,Y2,Z2,Za) out of the 3N de- 
scribing a configuration of N points are arbitrarily made 
zero leaving the proper number of 3N-6. 

S, the second invariant of the inertia tensor and for 
D, its determinant, but the algebra is almost pro- 
hibitive. S involves sums over vector and scalar prod- 
ucts of pairs of d,j terms and D requires sums over 
triple products. However, such expressions are made 
unnecessary by the procedure, described above, of 
factorizing the distance matrix and thus reducing the 
points to orthogonal coordinates from which the mo- 
ments of inertia are readily calculated. The principal 
moments of inertia 11,12,13 can be found by diagonal- 
izing the matrix just calculated or by the equivalent 
procedure of finding the invariants which are T = I I  + 
12 + 13, S = 1112 + 1213 + 1311, D = 111213 and solving 23 -- 
7"2 2 + 5 ' 2 -  D = 0 using the standard algorithm for cubic 
equations. 

Adjacency matrix 

The matrix [D] with elements d~j is readily converted 
to become an adjacency matrix [C] by examining each 
distance d~j and replacing it by 1 if the points i and j 
are deemed to be connected and by 0 if they are not. 
The terms Cu are made zero. 

The adjacency matrix [C] can be used in examining 
the topology of a molecule. It is the basis of various 
methods of indexing molecular structure and accounts 
have been published as to how the adjacency matrix 
can be converted to the Wiswesser Line Notation or to 
the Chemical Abstracts Service line-by-line system or 
to the I.C.I. Crossbow indexing system. These sys- 
tems can also be interconverted (Campey, Hyde & 
Jackson, 1970). 

If the adjacency matrix [C] is raised to the power 
m, then the entries represent the number of paths of 
length m steps from point i to pointj .  This may include 
many duplications, since, if i is connected to j ,  then 
there are also C~ + Cj paths of length three steps, where 
C~ is the coordination number o f  i and Cj that o f j .  
The sum of each row and column is the coordination 
number: 

C~ = ~. C~j -- coordination number of atom i. 
J 

A true count of paths of length (for example) five 
steps where none is retraced is best achieved either 
by taking the sum [e~jkI,,,,,IC~.tCikCkzCI,,,C,,,, where 
e~jkz,,, is the permutation tensor having the value 1 
if i,j, k, l ,  m, n are in an even permutation, - 1 if they 
are an odd permutation and 0 if any two are equal. 
A subroutine to generate those values of the permu- 
tation tensor which are not zero can be used. For large 
numbers of steps this strategy is better than scanning 
all values and excluding those which are zero, which 
is more convenient for six or fewer steps. 

All questions of topology and connectivity can be 
answered using the adjacency matrix. 

Other expressions 

A number of other matrix expressions can be cal- 
culated from the distance matrix for special purposes 
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or can be expressed in this form. For example, various 
expressions for the mutual potential or mutual energy 
of atom pairs (for pairwise interactions) can be written 
instead of the distances. This shows how the molecule 
is subdivided into groups where interactions between 
atoms of the groups are strong and between atoms of 
different groups are weak. The matrix can be rearranged 
to be nearly decomposable. 

The solid angle which one atom subtends at the face 
of the Voronoi polyhedron which it shares with another 
atom can be used as the entry in the matrix. This 
gives a picture of the atomic coordination, like that 
due to Pauling for the distribution of bond strength, 
but quantitative and susceptible of further development 
(Mackay, 1972). 

Summary  

Table 1 shows how the various matrix representations 
of a molecular structure are interrelated. 

Since this paper was submitted, Professor J. D. Dunitz 
has drawn my attention to a book, Gdomdtr ie  de 
Posi t ion  by L.N.M.Carnot (1803) in which the author 
formulated exactly the same problem, namely: 'In 
any system whatever of straight lines, in the same 
plane or not, being given certain of their lengths, or 
of the angles between them, or of the angles between 
planes containing them, in number sufficient to deter- 
mine the figure, find the remainder of these param- 

eters'. The problems which I have discussed relating 
to the general tetrahedron, the pentacle, the octa- 
hedron, the six angles between four bonds meeting at 
a point and the radius of a sphere tangent to four 
others (Mackay, 1973) are also solved in principle, 
although neither determinants, ideas of more than 
three dimensions nor computers were available at the 
time. Considerable progress was made towards the 
solution of the general problem posed and many results 
of the eighteenth century are collected, although usually 
without attribution. 

APPENDIX 

The description of molecules  as l inkwork 
computation of  d~, 0ijk, ~o0u 

d~j is the positive distance between point i and point 
j .  OUk is the bond angle between the link /j and the 
link j k  (0 < 0~jk -< 180°). The torsion angle ~P~ikz (Fig. 7) 
is the dihedral angle between the plane containing i, j 
and k and that containing j, k and l ( -  180°_< ~0ukz < 
180°). In defining ~ a sense of rotation is required; 
this can be taken as positive for a right-hand screw 
motion from ij to k l  aboutjk. The sign is provided by 
the sign of the volume of the tetrahedron i, j, k, l 
which is given by the triple product of r~j, rjk and rkz. 
If all four points are coplanar and the sign of the volume 
is undefined, then if i and l are on the same side of 
j, k, ~0=0 and if on opposite sides, ~=  180 °. With 

[D]= [ d~t d~z 
[ d~l d~2 

d~j matrix (N x N) 
qL 

[ g J =  r 2 2 al a l .  az 

L a 2 .  a t  a 2 . . .  

Metric matrix (N-  1) x (N-  1) 

1 
Various functions of du [ 

t 

Table 1. Variet ies  o f  the connect iv i ty  m a t r i x  f o r  N po in t s  

0 d~, d23... 1 
"~--'-~ d~t 0 d~s. • • l . . . .  1 = ( - 1 ) N 2 N - I [ ( N - 1 ) ! ] 2 V 2  

i i 1 . . . 0  
Determinantal expression for ( N - 1 ) -  dimensional 
hypervolume. (N+ 1) x (N+ 1). 

0 1 1  ] 
1 0 1 =[C] 
1 1 0 / 

. I  

Adjacency matrix (N x N) 

- "  [Oul  
Voronoi solid-angle matrix. 

"-" [Eu] 
Various expressions for energy from 
pairwise interactions. 

at. a3... ] factorize,_._.___, 

multiply 

Invert 

Invert 7 

I 0 0 0 1 xl 0 0 
x2 y2 0 
xa Ya z3 0 

[ x4 y4 z4 0 0 
Xs Ys zs 0 0 0 

0 

Matrix of orthogonal coordinates 
Lower triangular matrix N x N. 

[gu] 
Inverse metric matrix. 

Note: 
g,j = a, . aj = ½(d~o + d~o- d~9) 
d~ 1 = (at - a j) a =g ,  +g Jl - 2gil 
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/ 

/ 

L 

k 

/ 3  - 

Fig. 7. The definition of the torsion or dihedral angle ~p~. 

Fig. 8. Fig. 7 viewed along kj. 

Then qokt = ~' and 

(r,j × rjk) • (rjk X rk,) 
c o s ~ =  Ir~j×rj~llrjk×rktl  

Using Lagrange's  identity the numera tor  becomes: 

(r~j. rjk) (rj~. r~t)--(rj~, rj~) ( r t j .  r~) ;  

and since 
lal Ibl = la x bl/sin 0~b 

the denomina tor  equals 

(r~j × rjk ) × (rjk × rk/)/sin ~ .  

Applying the expansion of  the quadruple  vector prod-  
uct, the denominator  is then seen to be (r~j. r jkx 
rkt) (rjk) so that  after division, 

(r l j .  rjk × r~l)lrj~l 
tan ~ =  (rid " rjk) (rdk " r~z)--r~k(rlj, rkl)" 

This procedure is necessary because BASIC provides 
only arctangent  as an inverse t r igonometric  function 
ATN,  which is re turned as an angle between 0 and 180 °. 
We use the term (r t j .  rjk × rk~) which is the volume of  
the te t rahedron i,j, k, l and if this is positive, subtract  
180 ° from ~u. 

r ight-handed axes and the sequence i,j,k,l,O<~o~jk~ 
< 180 ° corresponds to a negative volume. The con- 
vention is that  of  Klyne & Prelog (1960). 

The angle between any two lines, even if they do 
not  intersect, is also defined and is the angle at which 
they would intersect if they were translated so that  
they had a common point. 

d~, ~jk and ~P~jkt can be calculated as follows, as- 
suming that  if necessary the crystallographic coor- 
dinates are first converted to Cartesian coordinates 
x~,y,z~. The vector from the origin O to the point  
P is denoted by to. 

(a) Thus, d~j= Ir~jl = Ir~-r~l = [ ( x ~ - x j )  2 h - (y t -Yj )  2 q- 
( z , - z y ]  '/2 

(b) The scalar product  of two vectors a and b is 

a .  b = l a l  Ibl cos Oab=axbx+arbr+azbz so that  

1/r,j-r4k ] 
Otjk=arcc°s ~lr~jI Irjkl! " 

(c) Consider the projection of the links i,j, k, 1 along 
the link j k  (Fig. 8). 
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